Эксоцман
на главную поиск contacts

Martingales and stochastic integrals in the theory of continuous trading

Опубликовано на портале: 06-10-2004
Stochastic Processes and their Applications. 1981.  Vol. 11. No. 3. P. 215-260. 
Тематический раздел:
This paper develops a general stochastic model of a frictionless security market with continuous trading. The vector price process is given by a semimartingale of a certain class, and the general stochastic integral is used to represent capital gains. Within the framework of this model, we discuss the modern theory of contingent claim valuation, including the celebrated option pricing formula of Black and Scholes. It is shown that the security market is complete if and only if its vector price process has a certain martingale representation property. A multidimensional generalization of the Black-Scholes model is examined in some detail, and some other examples are discussed briefly.



Статья рекомендуется в учебной программе Advanced Topics in Finance: Seminar in Financial Derivatives (Chance D.M.)

Ссылки
текст статьи:
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1B-45FCS8R-X&_user=10&_handle=W-WA-A-A-AU-MsSAYWW-UUA-AUCUDYZAZV-VACAUWCEY-AU-U&_fmt=summary&_coverDate=08%2F31%2F1981&_rdoc=1&_orig=browse&_srch=%23toc%235670%231981%23999889996%23296333!&_cdi=5670&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=79cd87d16cbc065e55fe65863012ffdc
BiBTeX
RIS
Ключевые слова

См. также:
Michael Todaro
[Книга]
Андрей Ремович Белоусов
Экономическая наука современной России. 2002.  № 1. С. 51-63. 
[Статья]
Benjamin E. Hermalin, Alice M. Isen
University of California, Economics Working Papers. 2000.  E99-270.
[Статья]
Halbert L. White
Econometrica. 1980.  Vol. 48. No. 4. P. 817-838. 
[Статья]