на главную поиск contacts

Practitioners' Corner: Double Length Artificial Regressions

Опубликовано на портале: 01-07-2004
Oxford Bulletin of Economics and Statistics. 1988.  Vol. 50. No. 2. P. 203-218. 
Recently, applied econometricians have become familiar with the idea that artificial regressions may offer a convenient way to compute many test statistics. One well-known family of artificial regressions is the outer product of the gradient (OPG) family. However, available evidence indicates that using tests based on the OPG regression can be very misleading. A procedure that often can replace it is the double-length artificial regression (DLR), which can be considered as a generalization of both the Gauss-Newton regression and the squared-residuals regression. A discussion includes applications to the nonlinear regression model as well as tests for functional form. DLRs potentially are very useful. While they generally have good finite-sample properties, they are applicable to far more situations than Gauss-Newton and squared-residuals artificial regressions. They also can be used as part of maximization algorithms and should be considered to routinely test regression equations for functional form.

Ключевые слова

См. также:
Robert J. Aumann
Econometrica. 1964.  Vol. 32. No. 1/2. P. 39-50. 
Борис Васильевич Боев, Элита Рустамовна Салман, Александр Викторович Баранчиков
Социология: методология, методы и математическое моделирование (Социология: 4М). 2001.  № 13. С. 76-96. 
Ray C. Fair
Journal of Political Economy. 1978.  Vol. 86. P. 45-61. 
Robert F. Engle, Kenneth F. Kroner
Econometric Theory. 1995.  Vol. 11. No. 1. P. 122-150. 
Halbert L. White
Econometrica. 1980.  Vol. 48. No. 4. P. 817-838. 
Jeffrey M. Wooldridge
Blake LeBaron
Studies in Nonlinear Dynamics and Econometrics. 1997.  Vol. 2. No. 2. P. 53-59.