Эксоцман
на главную поиск contacts

Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information

Опубликовано на портале: 30-01-2007
Econometrica. 2001.  Vol. 69. No. 4. P. 861-89. 
Тематический раздел:
This paper analyzes a class of games of incomplete information where each agent has private information about her own type, and the types are drawn from an atomless joint probability distribution. The main result establishes existence of pure strategy Nash equilibria (PSNE) under a condition we call the single crossing condition (SCC), roughly described as follows: whenever each opponent uses a nondecreasing strategy (in the sense that higher types choose higher actions), a player's best response strategy is also nondecreasing. When the SCC holds, a PSNE exists in every finite-action game. Further, for games with continuous payoffs and a continuum of actions, there exists a sequence of PSNE to finite-action games that converges to a PSNE of the continuum-action game. These convergence and existence results also extend to some classes of games with discontinuous payoffs, such as first-price auctions, where bidders may be heterogeneous and reserve prices are permitted. Finally, the paper characterizes the SCC based on properties of utility functions and probability distributions over types. Applications include first-price, multi-unit, and all-pay auctions; pricing games with incomplete information about costs; and noisy signaling games.

Ссылки
http://ideas.repec.org/a/ecm/emetrp/v69y2001i4p861-89.html
BiBTeX
RIS
Ключевые слова

См. также:
Ольга Николаевна Арзякова, Гавриил Александрович Агарков, Валентин Михайлович Кормышев
Университетское управление. 1998.  № 4(7). С. 49-51. 
[Статья]
Владимир Исаакович Верховин
Мир России. 1999.  Т. 8. № 3. С. 173-185. 
[Статья]
Peter Cramton, Robert Gibbons, Paul Klemperer
Econometrica. 1987.  Vol. 55. No. 3. P. 615-632. 
[Статья]
Экономическая наука современной России. 2002.  № 2. С. 173-176. 
[Статья]
Сергей Львович Печерский
[Учебная программа]